Skip to content

测绘 · 2022年8月4日 0

万博体育客户端电脑版教学设计(精选11篇)

)巩固深化,反馈矫正教师投影学习:(1)用自然语言描述集合(3)试选择适当的方法表示下列集合:教材第6页练习第2题.设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业小结:在师生互动中,让学生了解或体会下例问题:1.本节课我们学习了哪些知识内容?2.你认为学习集合有什么意义?3.选择集合的表示法时应注意些什么?设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

\\.已知△AOB的顶点坐标分别是A(8,0),B(0,6),O(0,0),求△AOB外接圆的方程.7求过点A(1,—1)B(—1,1)且圆心在直线x+y2=0上的圆方程参考答案:1B2B3A42或√25(1)(x+3)2+(y+4)2=25(2)M在圆内,N在圆上,P在圆外。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

**教案背景:**通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。

高中数学教学案例研究的主题内容主要集中在三方面:(1)学科特点的体现:如数学思想方法的教学、数学思维品质的培养、本质属性的抽象、数学结论的推广等;(2)学生数学学习规律的探究:如数学学习习惯、解决问题的思维方式、独立思考与合作学习等;(3)教师专业知识的提升:如数学板书与电子屏幕的展示对学生思维的影响、数学语言的训练对人们思维的影响、数学知识模式化教学的优劣等。

教学重难点熟练两角和与差的正、余弦公式的正用、逆用和变用技巧。

难点是解组合的应用题。

计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。

学生才会学习数学中体验发现的成就感,从而提高学生学习数学的兴趣;在此过程中,学生学会了交流合作,并学以致用,才能适应素质教育下培养”创新型”人才的需要。

若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。

证明A是B的充要条件,分两步:_(1)充分性:把A当作已知条件,结合命题的前提条件推出B;(2)必要性:把B当作已知条件,结合命题的前提条件推出A。

课堂观察方法不限于用肉眼观察、耳听手记,还可利用各种工具如照相、录音、摄像等作为辅助观察的手段,以提高观察的效果。

【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

检查教案评语教导处工作纪录撰写教案普遍比较认真。

即。

第二句:不该走的走了,其逆否命题为该走的没走,乙认为自己该走,所以乙也走了。

同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

小结求曲线上一点处的切线斜率的一般步骤:(1)找到定点P的坐标,设出动点Q的坐标;(2)求出割线PQ的斜率;(3)当时,割线逼近切线,那么割线斜率逼近切线斜率。

创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。

教学设计过程:本节课主要从以下几个方面展开:1)通过复习等差数列的定义,类比得出等比数列的定义;2)等比数列的通项公式的推导;3)等比数列的性质;有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1A组第1题。

情感态度与价值观(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。

可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)由于图象是形的特征,所以先从几何角度看它们有什么特征。

分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。

【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

解法二设P(2,4),Q(xQ,xQ2),则割线PQ的斜率为:当?x无限趋近于0时,kPQ无限趋近于常数4,从而曲线f(x)=x2,在点(2,4)处的切线斜率为。

【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

**教学重点:**理解并掌握曲线在一点处的切线的斜率的定义以及切线方程的求法。

几何方面的应用(面积和体积等的最值。

x2y211(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当92721|AM||MF|最小时,求M点的坐标。

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为将式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

中午你还主动给老师捶背,真是个会关心人的孩子,老师谢谢你。

**(3)棱台**定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:上下底面是相似的平行多边形侧面是梯形侧棱交于原棱锥的顶点**(4)圆柱**定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:底面是全等的圆;母线与轴平行;轴与底面圆的半径垂直;侧面展开图是一个矩形。

新课标指出:应该让学生在具体生动的情境中学习数学。

填好后,让学生仿照此例再列一个的表,将相应的内容填好。

学习过程:发现问题――实验猜想――构建模型――发现规律――论证再运用;学习方法:协作探讨,自主实验,猜想证明,发现应用。

会表示有关于几何体以及柱、锥、台的分类。

我们可以发现,通过教室平面内的有序数对,可以唯一的确定与之对应的同学。

**教学器材**多媒体ppt课件**教学过程**《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。

本节内容是在中,占据的地位。

利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法.循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求最值问题并为一道题,方便学生进行比较、分析。

同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。

篇二:万博体育客户端电脑版模板范文精选高中数学趣味竞赛题(共10题)**1、撒谎的有几人**5个高中生有,她们面对学校的新闻采访说了如下的话:爱:我还没有谈过恋爱。

变式训练。

)、二面角的平面角1、揭示概念产生背景。

练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分又不必要条件例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴xy≥0;再证充分性即:xy≥0则|x+y|=|x|+∣y∣若xy≥0即xy>0或xy=0下面分类证明(Ⅰ)若x>0,y>0则|x+y|=x+y=|x|+∣y∣(Ⅱ)若x<0,y<0则|x+y|=(-x)+(-y)=|x|+∣y∣(Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣综上所述:|x+y|=|x|+∣y∣∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.例5.已知抛物线y=-x2+mx-1点A(3,0)B(0,3),求抛物线与线段AB有两个不同交点的充要条件.解:线段AB:y=-x+3(0≤x≤3)-----------(1)抛物线:y=-x2+mx-1---------------(2)(1)代入(2)得:x2-(1+m)x+4=0--------(3)抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在0,3上有两个不同的解.**万博体育客户端电脑版大全二**集合的含义与表示一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

**教学重点:**如何建立实际问题的目标函数是教学的重点与难点。

物理方面的应用(功和功率等最值。

计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。

相当多有关最值的实际问题用导数方法解决较简单。

师:将横坐标与纵坐标互换?怎么换?(学生一时未能明白教师的意思,场面一下子冷了下来,教师不得不将问题进一步明确。

让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

课后作业:思考如何用三角函数单调性比较三角函数值的大小。

新课标指出:应当让同学在详细生动的情境中学习数学。

)理解定义、解决问题例2(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

情感态度与价值观(1)提高空间想象力与直观感受。

【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。

这样的话只动用了30美元。

Powered by WordPress. Theme by Alx.